If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144+x^2=900
We move all terms to the left:
144+x^2-(900)=0
We add all the numbers together, and all the variables
x^2-756=0
a = 1; b = 0; c = -756;
Δ = b2-4ac
Δ = 02-4·1·(-756)
Δ = 3024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3024}=\sqrt{144*21}=\sqrt{144}*\sqrt{21}=12\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{21}}{2*1}=\frac{0-12\sqrt{21}}{2} =-\frac{12\sqrt{21}}{2} =-6\sqrt{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{21}}{2*1}=\frac{0+12\sqrt{21}}{2} =\frac{12\sqrt{21}}{2} =6\sqrt{21} $
| y+40/3=5 | | 3+7v=25 | | 5s+20=85 | | -4.42+g=5.58 | | 360=138+x/2 | | 16-2=2n-25 | | 3+2+5x-x+12= | | u^2-13u=36 | | 9.6+x=2.3 | | 2h=15.86 | | -4n-1=2n-55 | | C=5n+40 | | (6x-5)+(x+5)+(2x-3)=180 | | u+-3=-4.8 | | 11(2x+3)=99 | | s^2=s | | v-2.5=9.9 | | 4x+20+60=60 | | v−2.5=9.9 | | 12x–19=5x+9= | | f/30=17 | | X+5+6x-5+2x-3=180 | | −6x+5−2x−11ሻ=137 | | 4x+20+60=09 | | 9c+18=81 | | r-969=-575 | | 2(4x−3)−8=4+8x | | 2w^2+16w-94=0 | | x+2/13=2 | | 4x-3=4x-10 | | m/31=27 | | 25-x/4=5 |